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Summary 

A generally applicable method for the automated classification of 2D NMR peaks has been developed, 
based on a Bayesian approach coupled to a multivariate linear discriminant analysis of the data. The 
method can separate true NMR signals from noise signals, solvent stripes and artefact signals. The 
analysis relies on the assumption that the different signal classes have different distributions of specific 
properties such as line shapes, line widths and intensities. As to be expected, the correlation network 
of the distributions of the selected properties affects the choice of the discriminant function and the final 
selection of signal properties. The classification rule for the signal classes was deduced from Bayes's 
theorem. The method was successfully tested on a NOESY spectrum of HPr protein from Staphylococ- 
cus" aureus. The calculated probabilities for the different signal class memberships are realistic and 
reliable, with a high efficiency of discrimination between peaks that are true NOE signals and those that 
are not. 

Introduction 

N M R  has become a powerful tool for the determina- 
tion o f  macromolecular  structures in solution (see, e.g., 
Ernst et al., 1986; Wfithrich, 1986; Griffey and Redfield, 
1987; Fesik, 1991; Hausser and Kalbitzer, 1991). A prac- 
tical problem often encountered during the evaluation of  
multidimensional N M R  data is the occurrence of  noise or 
artefact peaks which may result in erroneous conclusions 
(assignments) if they are not recognized. In a manual  
evaluation of  the data, these peaks can usually be recog- 
nized if the spectra are not too crowded. The problem is 
more severe in automatic or semiautomatic procedures 
where the occurrence of  a large number  o f  noise and 
artefact peaks tends to lead to an instability o f  the 
algorithms (resulting in wrong results or a large number 
of  possibly true solutions). As a practical solution for this 
problem, most  of  the more advanced program packages 
use a program architecture which allows the user to ex- 
amine the results and remove wrong solutions at any 

stage of  the evaluation. However, this interactive work is 
tedious and time-consuming and it is desirable to transfer 
at least parts o f  this task to the computer. After an 
optimal preprocessing (usually including t ime-domain 
filtering, base line correction and sometimes enhancement 
of  symmetrical spectral features), at the lowest level true 
resonance peaks have to be distinguished from noise and 
artefact peaks. To be able to do this, it is necessary to 
know the features of  true resonance peaks. For example, 
the probability that a signal is due to (thermal) noise 
decreases with increasing intensity. Since the first publica- 
tion o f  a program for automated spin pattern search in 
2D N M R  spectra (Neidig et al., 1984), this feature has 
been used (in a rather primitive way) in all programs that 
use a peak recognition step, by defining a lower threshold 
for the intensity of  true signals. Additional features which 
can be taken into account are the peak shape, occurrence 
at positions where artefacts are to be expected, or the 
presence of  symmetry-related partners (see, e.g., Glaser 
and Kalbitzer, 1987; Kleywegt et al., 1989,1990; Stoven 
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et al., 1989; Neidig and Kalbitzer, 1990; Garett et al., 
1991; Rouh et al., 1994). In the past, these features have 
been used not only for peak assessment in automated 
pattern recognition but also in the context of automated 
base plane corrections which, likewise, have to distinguish 
true signals from (base plane) artefacts (Dietrich et al., 
1991; Gtintert and Wtithrich, 1992; Manorelas and Nor- 
ton, 1992). 

For structural determination of macromolecules it is 
important to have a set of NOESY cross peaks as large 
and as reliable as possible; two requirements which are in 
some respects mutually exclusive. Here, reliability means 
the certain knowledge that the signal f(e01,o~2) is due to the 
magnetization transfer between two protons with reson- 
ances at the chemical shift positions co 1 and co2, but not 
due to artefact or noise effects. Even after a complete 
assignment of the spin systems and with exact knowledge 
of all relevant chemical shifts, with Uimi = f~, there may be 
a number of signals S((.0i,(0j) with 6%% e ~2 whose physical 
origin is of pure statistical or systematic (artefact) nature, 
such as thermal noise from the sample or the probehead, 
electronic noise from the hardware, digital noise, strong 
solvent stripes or t 1 noise (Mehlkopf et al., 1984). Such 
misinterpreted signals can cause severe convergence prob- 
lems and/or can lead to less accurate structures when they 
serve as input information for the subsequent calcula- 
tions. Very often such convergence problems, emerging 
during a constrained molecular dynamics (MD) run as 
NOE violations, serve the expert as a corrective for filter- 
ing of the original data input set. It often turns out that 
some of the signals originate from misinterpreted noise or 
artefact signals (apart from misinterpreted solvent or 
impurity signals) and have to be rejected, whereas other 
signals, originally thought to be irrelevant noise signals, 
must be added. 
Bayesian reasoning is a widely used statistical method of 

great flexibility, one of its advantages being that it can be 
used even if only partial information about the system is 
available. Bayesian methods have been applied to a var- 
iety of problems in NMR, including signal reconstruction, 
line fitting and peak recognition (Jaynes, 1985; Skilling 
and Gull, 1985; Bretthorst et al., 1988; Rouh et al., 1994). 
In a recent paper, Rouh et al. (1994) used a Bayesian 
method to predict if a data point in the spectrum is part 
of a peak or noise, with the assumption of Gaussian 
functions. In this paper we do not deal with the separ- 
ation of data but with a different problem: we present a 
generally applicable Bayesian method coupled to a 
multivariate linear discriminant analysis (Fisher, 1936; 
Tatsuoka, 1970) which calculates the probability that a 
given signal in an NMR spectrum is a member of a pre- 
defined class. It does not depend on special assumptions 
on noise distributions and can serve as a robust decision 
aid for the classification of signals into valid signals and 
noise and artefact signals. The method is based only on 

the general idea that signal classes having different physi- 
cal origins, such as NOE transfer signals in NOESY 
spectra, noise, and solvent signals have distinct and meas- 
urable properties in their frequency domain. 

Materials and Methods 

Sample preparation 
HPr protein from Staphylococcus aureus was isolated 

as described by Kalbitzer et al. (1982). The sample con- 
tained 4.9 mM HPr protein and 0.05 mM EDTA in 500 
gl of 95% H20/5% D20. Prior to sample preparation, 
oxygen was removed by flushing the solvents with helium 
and by storing the lyophilized protein in a helium atmos- 
phere for several hours. After dissolving the HPr protein 
in the oxygen-free solvent, the pH was adjusted to 7.8 by 
adding appropriate amounts of NaOD. The solution was 
transferred to the sample tube, which was then sealed off 
in helium. 

NMR spectroscopy 
NOESY spectra (Jeener et al., 1979) were recorded on 

a Bruker AM-500 NMR spectrometer operating at 500 
MHz. The water signal was suppressed by selective pre- 
saturation. A mixing time of 100 ms was used. Phase- 
sensitive detection in the tl direction was obtained accord- 
ing to Marion and Wtithrich (1983). 4 K x  1K time do- 
main data were recorded and Fourier transformed to 
obtain 1Kx 1K real data points in the frequency domain. 
The spectral widths in the two dimensions were 6849.31 
Hz, resulting in a final digital resolution of 6.68 Hz/point. 
Prior to Fourier transformation the data were filtered 
exponentially with a line broadening of 8 Hz. The region 
between 5 and 11.5 ppm (relative to internal 4,4-dimethyl- 
4-silapentane sulfonic acid) was baseline corrected in the 
fl) 2 direction according to Saffrich et al. (1992). 

Software 
Peak picking and integration was performed using the 

standard routines of the program package AURELIA. 
The method used by AURELIA for peak picking has 
been outlined earlier (Neidig et al., 1984). The software 
developed and described here is implemented in the latest 
release version of AURELIA. Relaxation matrix calcula- 
tions were performed with the program X-PLOR 3.1 
(Brfinger, 1993). The calculation of Spearman's rank 
correlation coefficients Cs (Spearman, 1904,1908) and of 
Hoeffding's correlation coefficients CH (Hoeffding, 1948; 
Hollander and Wolfe, 1978) was performed with the SAS 
package, Version 5 (1985). 

Theoretical considerations 

A satisfactory method for peak assessment must pro- 
vide a measure of the reliability of the cross peak under 



consideration. Ideally, it gives the probability that the 
peak is a member of a certain class Ci (e.g., a class of true 
resonance signals or a class of noise and artefact signals). 
In addition, it should fulfill the following conditions: (i) 
it has to be flexible; that is, it should be applicable to 
different kinds of multidimensional spectra, independent 
of special data processing; (ii) it must be easy to com- 
puterize and should require little information from the 
spectroscopist. For the estimation of the probabilities, the 
cross peaks must be characterized in some way. In the 
present implementation, local properties g k (1 ...... K ' )  o f  

peaks are used for the classification. They are derived 
from the peak shapes, the peak intensities and the peak 
widths. However, the method developed below could also 
be applied to nonlocal properties such as the existence of 
a symmetry-related cross peak or the location of t 1 noise. 
The properties characterizing peaks of a given class are 
usually not single-valued, but are defined by continuous 
distribution functions. Theoretically, the peak shape for 
a single transition is well defined in solution state NMR, 
and is a Lorentzian. Therefore, a two-dimensional reson- 
ance peak in the absorption phase could be defined by 
three parameters: the amplitude and the line widths in the 
two dimensions. However, in practice this does not work, 
since the observed lines are inhomogeneously broadened 
by unresolved J-couplings, and their shapes are distorted 
by the time-domain filtering of the data (except where an 
exponential filter has been applied). The exact shape of 
individual noise peaks, however, is in principle unpredict- 
able, because it is produced by stochastic and nonco- 
herent time processes. 

Therefore, different signal classes Ci (i= 1 ..... I) are 
characterized by multivariate probability distributions 
p(E[Ci) where E is a K 'x  1 matrix containing K' prop- 
erties (measured continuous variables) E k as components. 
In principle, we are free in the selection of the variables 
E k that are used for the classification of the peaks. How- 
ever, since we want to discriminate between different 
classes, the choice of E k is critical; they should be based 
on characteristic features of the cross peaks, which are 
different for peaks of different classes. 

Starting with Bayes's theorem (Cornfield, 1967,1969), 
the probability P(CJE J) that the cross peak j with the 
values El, of the properties Ek (k = 1 ..... K') belongs to class 
Ci can be calculated as 

P(Ci)P(EJICi) 
P(CjIE j ) =  ~ (1) 

ZP(Cj)P(EJ]Ci)  
i=l 

with P(Ci) the a priori probability of finding a cross peak 
of class Ci and P(EJICi) the probability of finding the 
property matrix E J for peaks j of class C i. In the follow- 
ing, we denote the probability distributions by p and their 
probabilities by R If the multivariate probability distribu- 
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tion p(EICi) is not known a priori, it has to be obtained 
from a sample which, in general, must be rather large in 
order to describe the multidimensional distribution func- 
tion completely. The distribution can be obtained from a 
much smaller sample if the properties E k are  statistically 
independent. In this case, the multivariate distribution can 
be obtained as a product of the univariate distributions 
p(EklCi). If Q variables are independent and the remaining 
K =  K ' - Q  variables are correlated, the probability dis- 
tribution p(EIC~) becomes, according to the multiplication 
theorem for the probabilities of independent events: 

Q 

p(EICj) = p(Rlei)  1-I p(EqlCi) (2) 
q=l 

with p(RICi) the reduced, K-dimensional probability dis- 
tribution. The probability distribution p(RICi) can be 
analysed by searching for a new set of independent vari- 
ables Y which are a linear combination of the compo- 
nents R k = E k (1 < k < K). With R the reduced vector (K x 1 
matrix) of properties and a'=(al,...,aK) the coefficient 
matrix, Y can be written as Y = a' R. Y corresponds to the 
linear discriminant function of the reduced problem. The 
corresponding matrix of coefficients a' is calculated by 
maximizing X with 

a' Ba 
~. - ( 3 )  

a' Wa 

The matrices B and W are calculated from the samples 
for the classes Ci as: 

I 

B = ~ ( P " i -  R)(P"i- R)' (4) 
i=l 

I n i 

W = Z Z ( R  I - R i ) ( R I -  Ri ) '  (5) 
i=l j=l 

with n i the number of elements in the sample of class Ci, 
I the number of classes and R i the reduced property 
vector for the peak j in class i. Furthermore: 

and 

ni 

R i  = 1 / n i Z R i  
j=l 

I 

= 1 ] I Z R  i 
i=l 

As usual, the optimum can be found by setting the first 
derivative 3X/Oa to zero, that is: 

~X 2[(Ba) - X(Wa)] 
~a a ~ W a  

- - 0 < = > ( B - X W )  a = 0  (6) 
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If  W is not singular (which is usually true), Eq. 6 can be 
rewritten as: 

(~-IB- Z1) a = 0 (7) 

with 1 the unity matrix. 
In order to find nontrivial solutions of this homogene- 

ous equation system, we have to solve the characteristic 
equation 

det IW-1B-M[ = 0 (8) 

This solution yields a polynomial of degree r = rank(W 1B) 
with r eigenvalues )~h (h= 1 ..... r) and r corresponding 
eigenvectors a h, fulfilling Eq. 7. The resulting linear trans- 
formations Yh = a~R are orthogonal and thus statistically 
independent (Wiesb6ck, 1987). With a h, every vector [3 a h 
([3 e ~ ,  [3 r 0) will fulfil the above condition. This means 
that scaling of the coefficient eigenvector a h has no effect 
on the separation power of Yh- Thus, the eigenvectors can 
be normalized by: 

a~ (9) a h  . . . .  - a h  

8, / ppm 

10.50 9.1/0 7.50 6.00 ~ / ppm 

Fig. 1. Training areas for different peak classes, indicated in part of 
a NOESY spectrum of HPr protein from S. aureus, dissolved in H20. 
The lowest contour level depicted is 80 000. In the shaded areas, pre- 
dominantly peaks from a single class are to be expected (S: true NOE 
signals; T: thermal noise; N: tl noise and artefacts; H: artefacts from 
the suppressed water signal). These areas were used to create the 
different probability distributions. Additional regions (B and R) are 
indicated which were used to test the performance of the discriminant 
analysis. 

The new probability distribution pQlqei) can be written 
a s :  

p(YlCi) = 15I P(YkICi) (10) 
k=l  

The dimensionality of the new probability distribution 
p(Y, Ci) can be reduced (with a possible loss of informa- 
tion) by the selection of the r' (r '< r) solutions with the 
largest values of)~. Then the total probability distribution 
becomes: 

r' e 
p(ElCi) = 1[ p (YklCi ) I [  p(Eq]Ci) (11) 

k=l  q=l 

By substituting this into Bayes's formula and replacing p 
with P one obtains Eq. 12: 

known a priori and are expected to vary between different 
N M R  spectra. Therefore, they must be extracted from the 
spectra. A simple way to obtain the distributions of  the 
different signal classes consists in the definition of spectral 
regions in which predominantly signals of  only one class 
C i are present. Figure 1 shows these regions in the 
NOESY spectrum used below for characterization of the 
basic properties of our discrimination method. 

The selected regions are indicated by different shad- 
owed squares, highlighted with capital letters. We denote 
T as a region of thermal noise (peak class T), N as a 
region containing the more intense spectral artefacts such 
as tl noise (peak class N), H as a region containing the 
typical artefacts from the suppressed H20 signal (peak 
class H), S as a region containing true N M R  signals 
(peak class S), B as the test region with a mixture of 
NOE signal peaks and noise signals, and R as a smaller 

r' e 
P(C~) I I  P(YklC~) 1-[ P(EqlCi) 

p(Cil YI ..... Yr', El,.--, EQ) = k=l q=l  

P(Cj) P(gklc j )  I I P ( g q l C j )  
j=l  k = l  q=l  

(12) 

Defini t ion o f  variables  and ca lculat ion  o f  probabi l i ty  
distr ibutions 

The probability distributions of the variables in Eq. 12 
must be known to calculate the probabilities P(CilYJ,E J) of 
a given peak j to be member of the class Ci. These are not 

part of region B, where the procedure has been tested by 
a recalculation of the N M R  spectrum from the known 
three-dimensional structure. 

The definition of our actual variables was guided by 
our experience in analysing NOESY spectra. What are 
the features and patterns that determine the decision of 



an experienced NMR spectroscopist that a single and 
unknown peak is an NOE or a non-NOE signal, even 
without a time-consuming and often ambiguous line- 
shape analysis? One would be very sceptical about peaks 
with broad tails, tall peaks with high intensities looking 
like noise spikes, or extended rectangular peaks with flat 
tops, the typical texture of solvent stripes. Recognition of 
these patterns by an automaton instead of our visual 
system requires the evaluation of different peak curve 
integrals, normalized to the respective peak intensities. 
We constructed distributions of the following variables 
for the different signal classes, where f(0~1,c02) denotes the 
formal description of the 2D signal: 

(i) The absolute intensity (amplitude) of the signal, 
denoted by El; 

(ii) The ratio of peak volume to peak intensity, 
denoted by E2. This is defined as: 

H f(0)l,C%) dc01do)2 
r ,r 2 for 

E2 = f_>0.05E1 
E1 

(13) 

(iii) The relative volume of the tail of the peak, 
denoted by E3. This is defined as: 

IIf(c01,co2)dcoldo)2- IIf(o)~,c02)dc01dr 
COl,CO 2 for Ol,O 2 for 

g3 = f>_0.05E1 f>_0.2E1 (14) 
E1 

(iv) The relative volume of the top of the peak, 
denoted by E4. This is defined here as: 

~ I f(f-01,0~ 2 ) d~ 1dr-0 a 
031,~ 2 for 

E4 = f_>0.5El 
E1 

(15) 

The class membership of the peaks used for the con- 
struction of the probability distributions should be as 
definite as possible, which means that the regions in 
which the recognition procedure is learned should contain 
only peaks of one class. This condition can only be ap- 
proximated in real 2D spectra. Most areas contain peaks 
from more than a single class. As can be seen in our 
example (Fig. 1), it is easy to find a region where thermal 
noise is present exclusively (region T). The area contain- 
ing artefacts like t~ noise (region N) is also easy to define, 
since it is always possible to find areas where no true 
N MR  signals are to be expected. However, even here one 
has to be aware that this class comprises at least two 
types of peaks, with possibly different characteristics, i.e. 
thermal noise peaks and artefact peaks. The training area 
for true signals (region S) always contains noise peaks 
and artefact peaks. The region with the artefacts resulting 
from imperfect water suppression usually contains numer- 
ous peaks of the classes T, N and S. 
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For an effective discriminant analysis, it is essential 
that the samples used for the calculation of the probabil- 
ity distributions contain predominantly peaks of only one 
class. If this cannot be achieved easily by the definition of 
the training areas, additional selection rules should be 
applied. For properties which, at least in a first approxi- 
mation, are independent of the intensity (properties E2 to 
E4), this can be done in a simple way by applying an 
intensity threshold. Peaks of the classes S, N and H can 
be separated from thermal noise in region T by using 
only peaks with intensities higher than the 95th percentile 
of peaks in area T. True NOE signals can be separated 
from artefacts and thermal noise by selecting peaks in 
area S with intensities higher than the 95th percentile 
found in area N. The only problem is the construction of 
the intensity distribution of signals at low intensities, for 
which no straightforward method exists. However, if the 
area is not too crowded, and with the approximation that 
peak overlaps or superpositions can be neglected, the 
distribution p(EI[S) obtained from the area S can be 
corrected in a simple way. The corrected probability 
distribution p(EllS c~ is given by: 

DN / DN 
p(EllS ~~ = 1 + ~ V  p(EIlS) - ~-~-p(EIlN) (16) 

with D s and D TM the peak densities in areas S and N. In 
our spectra the signal area is rather crowded. Here, it 
turned out that better results could be obtained by replac- 
ing the peak densities D s and D N in Eq. 16 by the inten- 
sity densities A s and A N , which are defined by: 

~Eli 
A s _ i~s (17a) 

F(S) 

~ E l i  
A N _ ioN (17b) 

F(N) 

with F(S) and F(N) the areas of S and N, respectively. 
The sum in Eqs. 17a and b is carried out over all peaks 
in the S or N areas, p(EIlS c~ is then defined by: 

AN ) AN 
p(EllS .... ) = 1 + ~ p ( E l l S ) -  ~ - p ( E I l N )  (18) 

The only factors not yet determined in Eq. 12 are the 
probabilities P(Ci) , i.e., the general a priori probabilities 
of finding peaks of a given class C i. There is no really 
obvious way to approximate these probabilities. One 
solution would consist in setting the (subjective) prob- 
abilities P(N) and P(S) to 0.5, which would be equivalent 
to the statement that no a priori knowledge about the 
occurrence of noise and signal peaks is available. Another 
way to approximate the a priori probabilities in NOESY- 
type spectra could be based on the intensities at the diag- 
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onal of the spectrum. In this case the a priori probability 
could be dependent on two frequency coordinates. Since 
not all types of two-dimensional spectra contain diagonal 
signals, this method is not generally applicable. A simple 
estimate for P(N) and P(S) can be obtained on the basis 
of the same arguments used for the derivation of Eq. 18. 
Because of the high peak density, the intensity density is 
again probably somewhat better suited than the pure 
peak density for the approximation of the a priori prob- 
abilities. Therefore, the present implementation is based 
on the normalized intensity densities, namely: 

and 

A N 
p(N) - (19) 

A s + A TM 

A S 

p(S) - AS + AN (20) 

However, a general advantage of the Bayesian approach 
is that it is not critically dependent on the exact knowl- 
edge of the a priori probabilities, as long as they are not 
wrongly assumed to be almost zero or one. 

Since the probability distributions are obtained from a 
limited, discrete sample, they must be smoothed. In a first 
step, the range of possible values is divided into discrete 
intervals containing a sufficiently high number of events. 
In a second step, a moving average filter, defined as: 

i+3 ") 

E = 3Pi+ Y, Pk] / 9  (21) 
k=i-3; k~iJ 

(with P~,k the values in the intervals i,k) is applied to these 
intervals. If there are still intervals with zero probability, 
the zero is replaced by a value of 10 -s to avoid discon- 
tinuities in the distribution function due to too small a 
size of the sample. Finally, the distribution functions are 
renormalized to a total integral of 1. 

Results  and Discuss ion  

Figure 2 shows the probability distributions of the 
properties El,  E2, E3 and E4 for the different classes Ci 
defined above. For all signal classes the abscissa has been 
divided into 100 equal intervals. Peak picking was per- 
formed above a threshold level of 80 000, which corre- 
sponds to the 75th percentile of the E1 distribution for all 
positive N area peaks. Below this level, noise and arte- 
facts dominate the entire signal and the evalution of the 
data is not meaningful. Since the thermal noise is very 
weak in the analysed spectrum (maximum intensity 
56 000), in the T area a lower intensity threshold of 24 000 
has been applied. The E1 distribution of these peaks is 
not shown in Fig. 2a, since the lowest intensity depicted 
is 80 000. Inspection of these distributions shows that all 
classes differ significantly in their distribution functions 
for the properties El-E4.  As expected for small ampli- 
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Fig. 2. Uncorrected probability distributions: (a) p(EIIC~); (b) p(E2IC~); (c) p(E3lCi); and (d) p(E4IQ ) for the different signal classes C~. ( ....... )=  
signals of  the noise class N; ( ) = true signals of  class S; ( . . . .  ) = thermal noise peaks of  class T; and ( . . . . . .  ) = signals from the suppressed water 
resonance (class H). Only signals with intensities above 80 000 were taken into account for signal classes S, N and H. Since the max imum  intensity 
in the T area is 60 000, its area distributions were calculated from signals with intensities higher than  24 000. No  signals of  the classes S, N and 
H were sampled in the shaded intensity interval of  Fig. 2a. 
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Region (n ~) Variable Max imum Minimum s b P25 ~ Median P75 ~ 

S d (795) E1 2 275 778 80 052 348 642 121 338 195 738 408 224 

E2 48.31 1.07 6.80 8.87 12.41 16.94 
E3 9.27 1.00 3.49 5.19 6.84 9.36 
E4 21.85 0.04 1.36 0.59 1.10 2.04 

N d (192) E1 384 900 80 066 49 869 99 392 123 522 159 878 

E2 32.29 2.69 5.98 8.24 10.73 15.55 
E3 17.89 1.58 3.31 4.73 6.60 8.95 
E4 4.88 0.02 0.44 0.44 0.87 1.34 

H d (352) E1 253 777 584 90 358 37 407 077 1 048 982 3 520 726 8 997 188 

E2 35.73 1.0 5.58 5.69 7.94 11.78 

E3 25.63 0.05 3.88 2.94 4.61 7.10 
E4 3.73 0.05 0.70 0.25 0.53 1.03 

T (182) E1 56 026 24 082 5311 25 510 27 696 31 072 

E2 21.19 1.75 3.77 6.08 8.56 11.39 
E3 12.44 1.62 2.27 4.16 5.59 7.12 
E4 3.79 0.05 0.58 0.19 0.42 0.75 

a n = number  of  peaks. 
b S = s tandard deviation. 
c P25 and P75 are the 25th and 75th percentile, respectively. 
d Data  were taken from the probability distributions presented in Fig. 1, except for the signals in the T area where a lower threshold of  24 000 

was used. 

tudes, the probability distributions of peak amplitudes 
(property El) show a pronounced probability for noise 
peaks (area N) compared to the distributions of peaks 
from the signal area S. In contrast, the artefacts from the 
suppressed water signal (area H) are characterized by a 
very flat distribution function with rather high probabil- 
ities for high intensities. (Fig. 2a). Correspondingly, the 
statistical analysis of the distributions (Table 1) results in 
the smallest value of the median and the standard devi- 
ation for thermal noise T, the noise and artefact peaks N 
having an almost fourfold higher median and an approxi- 
mately 10-fold higher standard deviation than peaks of 
class T. Although there is only a factor of two between 
the medians of peaks of the noise class N and the signal 
class S, the distribution of the signal peaks is significantly 
broader, with a sevenfold larger standard deviation. The 
peaks in the H area are more intense by more than a 
factor of 10 compared to the signal peaks S; this is the 
reason why signals in this area are usually not evaluated. 
It is clear from Fig. 2 that the differences between the 
peak classes also hold for the other properties; the dis- 
tributions overlap but are different. 

As stated above, the E1 distribution of signals obtained 
from the S area must be corrected, since it contains a cer- 
tain amount of noise peaks. Figure 3 shows the effect of 
such a correction using Eq. 18 for the E1 distribution of 
class S signals. Under the assumption that the published 
N MR  structure of HPr from S .  a u r e u s  is correct (Kalbit- 
zer and Hengstenberg, 1992), it is possible to calculate the 
'true' noiseless NOESY spectrum on the basis of the full 
relaxation matrix formalism (Borgias and James, 1984; 

Keeper and James, 1984). The distribution obtained in 
this way agrees fairly well with our corrected probability 
distribution, i.e., our method of correction represents a 
good approximation to the 'true' NOE signal distribution. 

In most practical cases only the assignment to two 
classes, that of true NOE signals and that of noise and 
artefact peaks, is of interest. In the following we restrict 
our analysis to these two classes. In order to determine 
the mutual dependence of our variables, a correlation 
analysis for all proposed variables was performed. As 
before, only peaks of area S with intensities higher than 
80 000 were used for this analysis. The calculated Spear- 
man's rank correlation coefficients Cs (Spearman, 1904, 
1908) and the Hoeffding's correlation coefficients C n 
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Fig. 3. Corrected probability distribution of intensity El ,  together 
with the 'ideal' probability distribution. Uncorrected probability dis- 
tributions of signals in area S ( ), probability distribution noise- 
corrected according to Eq. 18 ( ~ ) ,  and ' true'  NOE signal distribu- 
tion ( . . . . . .  ). No signals were sampled in the shaded intensity interval. 
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TABLE 2 
CORRELATION COEFFICIENT MATRICES FOR S AREA 

SIGNALS 

E1 E2 E3 E4 

Spearman's rank correlation coeffidents 
E1 1 -0.4185 0.5033 0.2224 
E2 -0.4185 1 -0.7622 -0.8975 
E3 0.5033 -0.7622 1 0.6468 
E4 0.2224 -0.8975 0.6468 1 

Hoeffding's correlation coefficients 
E1 1/30 0.0017 0.0027 0.0005 

E2 0.0017 1/30 0.0079 0.0139 
E3 0.0027 0.0079 1/30 0.0050 
E4 0.0005 0.0139 0.0050 1/30 

(Hoeffding, 1948; Hollander and Wolfe, 1978) are given 
in Table 2. Cs can vary between -1 and 1; values near -1 
or 1 indicate correlated variables. CH can vary between 
-1/60 and 1/30; values near 1/30 reveal correlated prop- 
erties. 

Examination of the data shows that the intensity dis- 
tribution E1 is rather independent of the other distribu- 
tions, whereas the other variables are mutually correlated. 
Such behaviour is to be expected, since E2-E4 describe 
properties of the peak shape which should be largely 
independent of the intensity E1 for noise and signal 
peaks. Therefore, to a first approximation, E1 can be 
treated as an independent variable but the remaining 
three variables should be subjected to the discriminant 
analysis described above. 

For the evaluated NOESY spectrum, the solution with 
the highest eigenvalue and thus the highest discrimination 
power gives the normalized eigenvector components 
a2=0.027, a3=0.999 and a4=0.021 (with the reduced 
variable Y = (a2 E2 + a3 E3 + a4 FA)). Obviously, in this 
data set the variable E3 yields the most important contri- 
bution for the construction of Y. However, this is prob- 
ably not generally true for all kinds of data sets, since E2, 
E3 and E4 describe different aspects of the line shape. In 
different data sets different eigenvectors will be found; 
this feature becomes obvious if one realizes that a differ- 
ent digital filtering of the NOESY spectrum used as 
example here is sufficient to change the calculated eigen- 
vector components. The probability distribution obtained 
after this transformation for N and S peaks is depicted in 
Fig. 4. 

The distributions of Y obtained for the two classes 
appear rather different, although there is still a consider- 
able overlap. Although one can expect three (formally) 
independent solutions from the discriminant analysis of 
our data, in discriminant analysis usually only a subset of 
the possible solutions is used (one reason for this is that 
the limited size of the samples suggests a number of for- 
mally independent solutions which do not actually exist). 
For the analysis of our data it turned out to be sufficient 

to take only the solution with the highest eigenvalue, i.e., 
the final probability distribution (Eq. 11) reduced to the 
case r'= 1, Q = 1, where it is only dependent on two vari- 
ables: E1 and Y. 

In order to compare our calculated probabilities 
P(SIY, E1) with the 'ideal' probabilities RS, it is necess- 
ary to know which peaks belong to which class in a test 
spectrum. Such a decision can be made (at least to a 
first approximation) by the calculation of a theoretical 
NOESY spectrum from the three-dimensional structure of 
the protein (see above). RS indicates the relative number 
of true signal peaks (i.e., peaks confirmed by the back- 
calculation) in a given probability interval. Ideally, the 
two probabilities should be identical. Figure 5 shows that 
our procedure provides a satisfactory result, the calcu- 
lated probabilities approximating rather well to the ex- 
pected linear behaviour. Our resulting data can be used 
for an a posteriori analysis of the training sets. Such an 
analysis was performed for our training sets of noise and 
signal peaks, where the mean value of P(SIY, E1) was 0.24 
for peaks in the N area and 0.63 for peaks in the S area. 

A typical result of the Bayesian procedure described is 
depicted in Fig. 6. The figure shows a 2D contour plot of 
the R region defined in Fig. 1. Note that the lowest con- 
tour level of 80 000 shows a large number of peaks that 
could not be used in the published structure calculation 
(Kalbitzer and Hengstenberg, 1993) since they have the 
same intensity as artefact peaks. The typical minimal 
intensity of peaks used for these calculations corre- 
sponded to four contour lines in the plot. Peaks which 
were not predicted from the back-calculation, and which 
are most probably artefacts, are shaded. The probability 
P(S[Y, E1) that a given peak is a true NOE peak is indi- 
cated. In general, the calculated probabilities match very 
well with expectation, true peaks having probabilities near 
1 and artefact peaks displaying low probabilities. How- 
ever, miracles cannot be expected: very weak signal peaks 
usually obtain probabilities around 0.5, thus not yielding 
sufficient information to decide with certainty whether 
they represent true signals. The arrow indicates an ex- 
tremely weak peak which represents an NOE contact 
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Fig. 4. Probability distributions of the reduced variable Y for peaks 
of the corrected S class ( ) and of the N class ( ....... ). 
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Fig. 5. Comparison between the expected probability RS and the cal- 
culated probability P(SIY, E1). RS is plotted as a function of the pro- 
bability P(SIY, E1). RS was obtained by checking how many cross 
peaks in a given interval of P(SIY, E1) were predicted from the back- 
calculation of the NOESY spectrum, i.e., RS=(N~~ EI)))/ 
(NB(P(SIY, EI))), with N~~ E1)) the number of predicted NOE 
peaks in B with the probability in the interval P(NY, E1), and 
NB(P(S,NIY, E1)) the total number of peaks in B in this interval (50 in- 
tervals with a width of 0.02 were used to divide the abcsissa in classes 
of similar probabilities). The straight line shows the best linear fit of 
RS = A + B • P(SIY, E1) with A = 0.006, B = 0.98, a regression coefficient 
of 0.91 and a standard deviation of 0.13. 

between residues 59 and 64. Despite its very low intensity, 
it has obtained an ambient probability. 

For practical applications, the effective computing time 
is an important aspect. This time could be shortened if 
one tries to produce a standard library containing the 
probability distributions for true signal and artefact peaks 
together with their normalized eigenvectors. This would 
have the additional advantage that the training set could 
be created from a larger number of spectra and therefore 
include a larger number of  samples for the creation of  the 
distribution functions. However, a disadvantage is that 
the application of such a library would require a rigid 
standardization of acquisition and processing conditions, 
which most users would not accept. On a Bruker Aspect 
station, the definition of training sets and the calculation 
of distribution functions and eigenvectors takes only 
approximately 10 rain, so computing time is not really an 
argument for the limitation of flexibility by standardiz- 
ation. However, it could be useful for the analysis of  
closely related data sets, such as a series of  NOESY spec- 
tra recorded with different mixing times, where the im- 
proved definition of the distribution functions could lead 
to more accurate results. The calculation of the probabil- 
ities can also be performed in a reasonable time. For the 
spectrum shown in Fig. 1 the evaluation of 1000 peaks re- 
quired approximately 10 s. These computing times allow 
application of the data analysis under experimental condi- 
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tions which are optimized for the actual problem and 
may change from case to case. With regard to the data 
processing, it is not clear a priori which digital filter func- 
tion is optimal for the discriminant analysis because the 
convolution with the filter function may reduce the dis- 
criminatory power. However, since optimal filtering en- 
hances typical properties of signals and suppresses noise 
and artefacts, in our opinion it is better to use the dis- 
criminant analysis on a data set that has been optimized 
for such an enhancement. In the spectrum shown, we 
used an exponential filtering adapted to the expected line 
widths and line splittings of our protein spectrum. With 
such a line broadening, the multiplet structure of  the 
peaks vanishes. Another possibility would be a Lorentz- 
ian-to-Gaussian transformation; such a transformation, 
however, would probably decrease the discrimination 
power of E3. The extreme alternative, the application to 
nonfiltered data, would probably have resulted in the cor- 
rect assessment of  a much larger number of  noise peaks, 
simply because the number of noise peaks would have in- 
creased very much. However, such an improved discrimi- 
nation of peaks that are not present in the correctly pro- 
cessed spectrum does not make much sense. 

In our example, the intensity distribution was separ- 
ated from the other variables and not included in the 
discriminant analysis. Such a procedure is not required by 
the algorithm itself. Essentially, the same results would 
have been obtained by performing the discriminant analy- 
sis in four-dimensional space, and retaining the two eigen- 
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Fig. 6. Peak assessment in an experimental NOESY spectrum. The 
figure shows a contour plot of the R region of Fig. 1. Peaks not 
expected from the back-calculation of the NOESY spectrum are 
indicated by grey circles. The numbers represent the computed prob- 
abilities P(S1Y, E1 ) of  a peak to be a true signal. The arrow indicates 
a very weak long-range NOE between residues 59 and 64. The lowest 
contour level starts at 80000, with a multiplication factor of 1.5 for 
subsequent levels. 
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vectors with the highest eigenvalues. However, initial 
separation of E1 has the practical advantage that it 
speeds up the calculation and this separation is justified, 
since E1 is only weakly correlated to the other prop- 
erties. 

Conclusions 

The method presented in this paper is flexible and 
efficient, it is generally applicable to any kind of n-dimen- 
sional NMR spectrum (n > 1), and it gives the probability 
that a given peak in the spectrum is a member of a prede- 
fined class, such as the classes of noise or true signals. It 
does not depend on a priori assumptions about the ex- 
pected peak shapes, the only condition for its use being 
the existence of some properties which have different pro- 
bability distributions for the classes to be separated. It is 
very easy to use, since it only requires a definition of a 
training set by the user. In the present implementation we 
used the four characteristic properties E l -E4  for the 
discriminant analysis. We have shown that the choice of 
these properties is well suited for the analysis of our ex- 
perimental data and we think that most types of two- 
dimensional spectra can be analysed sufficiently well with 
these basic properties. 

However, one has to be aware that the algorithm de- 
scribed is very general; in particular, it can be used for 
any number and type of properties. Since the probabilities 
obtained reflect the information available, their discrimi- 
nating power will increase with the amount of informa- 
tion used. Therefore, the choice of additional properties 
such as local peak symmetries and global symmetries may 
be useful, and can be fitted into the general algorithm as 
described above. 

The probability information may be useful in many 
practical situations. We developed the algorithm mainly 
with two applications in mind, namely automatic spin 
system assignment and automatic calculation of a three- 
dimensional structure from a partly unassigned NOESY 
spectrum. In both applications the probability informa- 
tion could be used for an iterative procedure, where first 
the signals with high probability are used for the analysis 
and subsequently peaks with lower probabilities are taken 
into account as well. 
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